Homology, homoplasy, novelty, and behavior.
نویسنده
چکیده
Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous).
منابع مشابه
Levels of biological organization and the origin of novelty.
The concept of novelty in evolutionary biology pertains to multiple tiers of biological organization from behavioral and morphological changes to changes at the molecular level. Identifying novel features requires assessments of similarity (homology and homoplasy) of relationships (phylogenetic history) and of shared developmental and genetic pathways or networks. After a brief discussion of ho...
متن کاملHomoplasy, homology, and the perceived special status of behavior in evolution.
Evolutionary biologists tend to tread cautiously when considering how behavioral data might be incorporated into phylogenetic analyses, largely because of the preconception that behavior somehow constitutes a "special" set of characters that may be inherently more prone to homoplasy or subject to different selection regimes than those that operate on the morphological or genetic traits traditio...
متن کاملHomoplasy and homology: dichotomy or continuum?
Homology is the presence of the same feature in two organisms whose most recent common ancestor also possessed the feature. I discuss the bases on which we can tell that two features being compared share sufficient elements of sameness to allow them to be treated as homologous and therefore to be legitimately compared with one another in a way that informs comparative, evolutionary, and phyloge...
متن کاملThe Science of Phylogenetic Systematics: Explanation, Prediction, and Test
When the concept of homology is operationalized with synapomorphy and tested with character congruence, homology and homoplasy are treated as a complement relation, a and not-a, respectively. This leaves homoplasy to be defined nominally, something like operational “error” in the inference of homology. In choosing the most severely tested and least disconfirmed cladogram, those errors are minim...
متن کاملThe morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?
Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same characte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental psychobiology
دوره 55 1 شماره
صفحات -
تاریخ انتشار 2013